CVE-2025-40230
mm: prevent poison consumption when splitting THP
Description
In the Linux kernel, the following vulnerability has been resolved: mm: prevent poison consumption when splitting THP When performing memory error injection on a THP (Transparent Huge Page) mapped to userspace on an x86 server, the kernel panics with the following trace. The expected behavior is to terminate the affected process instead of panicking the kernel, as the x86 Machine Check code can recover from an in-userspace #MC. mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134 mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0} mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320 mce: [Hardware Error]: Run the above through 'mcelog --ascii' mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel Kernel panic - not syncing: Fatal local machine check The root cause of this panic is that handling a memory failure triggered by an in-userspace #MC necessitates splitting the THP. The splitting process employs a mechanism, implemented in try_to_map_unused_to_zeropage(), which reads the pages in the THP to identify zero-filled pages. However, reading the pages in the THP results in a second in-kernel #MC, occurring before the initial memory_failure() completes, ultimately leading to a kernel panic. See the kernel panic call trace on the two #MCs. First Machine Check occurs // [1] memory_failure() // [2] try_to_split_thp_page() split_huge_page() split_huge_page_to_list_to_order() __folio_split() // [3] remap_page() remove_migration_ptes() remove_migration_pte() try_to_map_unused_to_zeropage() // [4] memchr_inv() // [5] Second Machine Check occurs // [6] Kernel panic [1] Triggered by accessing a hardware-poisoned THP in userspace, which is typically recoverable by terminating the affected process. [2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page(). [3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page(). [4] Try to map the unused THP to zeropage. [5] Re-access pages in the hw-poisoned THP in the kernel. [6] Triggered in-kernel, leading to a panic kernel. In Step[2], memory_failure() sets the poisoned flag on the page in the THP by TestSetPageHWPoison() before calling try_to_split_thp_page(). As suggested by David Hildenbrand, fix this panic by not accessing to the poisoned page in the THP during zeropage identification, while continuing to scan unaffected pages in the THP for possible zeropage mapping. This prevents a second in-kernel #MC that would cause kernel panic in Step[4]. Thanks to Andrew Zaborowski for his initial work on fixing this issue.
INFO
Published Date :
Dec. 4, 2025, 4:16 p.m.
Last Modified :
Dec. 4, 2025, 5:15 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products
The following products are affected by CVE-2025-40230
vulnerability.
Even if cvefeed.io is aware of the exact versions of the
products
that
are
affected, the information is not represented in the table below.
No affected product recoded yet
Solution
- Update the Linux kernel.
- Avoid accessing poisoned pages during zeropage identification.
- Set the poisoned flag before splitting THP pages.
- Map unused THP to zeropage using RMP_USE_SHARED_ZEROPAGE.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-40230.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-40230 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-40230
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-40230 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-40230 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Dec. 04, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: mm: prevent poison consumption when splitting THP When performing memory error injection on a THP (Transparent Huge Page) mapped to userspace on an x86 server, the kernel panics with the following trace. The expected behavior is to terminate the affected process instead of panicking the kernel, as the x86 Machine Check code can recover from an in-userspace #MC. mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134 mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0} mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320 mce: [Hardware Error]: Run the above through 'mcelog --ascii' mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel Kernel panic - not syncing: Fatal local machine check The root cause of this panic is that handling a memory failure triggered by an in-userspace #MC necessitates splitting the THP. The splitting process employs a mechanism, implemented in try_to_map_unused_to_zeropage(), which reads the pages in the THP to identify zero-filled pages. However, reading the pages in the THP results in a second in-kernel #MC, occurring before the initial memory_failure() completes, ultimately leading to a kernel panic. See the kernel panic call trace on the two #MCs. First Machine Check occurs // [1] memory_failure() // [2] try_to_split_thp_page() split_huge_page() split_huge_page_to_list_to_order() __folio_split() // [3] remap_page() remove_migration_ptes() remove_migration_pte() try_to_map_unused_to_zeropage() // [4] memchr_inv() // [5] Second Machine Check occurs // [6] Kernel panic [1] Triggered by accessing a hardware-poisoned THP in userspace, which is typically recoverable by terminating the affected process. [2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page(). [3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page(). [4] Try to map the unused THP to zeropage. [5] Re-access pages in the hw-poisoned THP in the kernel. [6] Triggered in-kernel, leading to a panic kernel. In Step[2], memory_failure() sets the poisoned flag on the page in the THP by TestSetPageHWPoison() before calling try_to_split_thp_page(). As suggested by David Hildenbrand, fix this panic by not accessing to the poisoned page in the THP during zeropage identification, while continuing to scan unaffected pages in the THP for possible zeropage mapping. This prevents a second in-kernel #MC that would cause kernel panic in Step[4]. Thanks to Andrew Zaborowski for his initial work on fixing this issue. Added Reference https://git.kernel.org/stable/c/6fc0a7c99e973a50018c8b4be34914a1b5c7b383 Added Reference https://git.kernel.org/stable/c/841a8bfcbad94bb1ba60f59ce34f75259074ae0d Added Reference https://git.kernel.org/stable/c/92acf4b04f255d2f0f6770bb0d0a208d8ffb2b77